1. 网站首页
  2. 社区
  3. 论坛
  4. 博客

局部方向模式人脸识别方法

资料大小: 0.79 MB 所需积分: 1 下载次数: 用户评论: 0条评论,查看 上传日期: 2017-11-29 上 传 者: 程林他上传的所有资料

资料介绍

标签:人脸识别(231)
  为了解决局部方向模式(LDP)在人脸特征提取过程中采用固定的平均分块方式,不能自适应突出不同样本特征的这一问题,提出一种基于兴趣点定位的改进LDP人脸特征提取方法。兴趣点所在位置特征信息丰富,其根据不同图像自动分布,可以突出不同图像的不同特点。首先定位人脸图像的加速鲁棒特征( SURF)特征点,并通过K-means聚类算法优化兴趣点的数量,确定兴趣点位置;之后以每个兴趣点作为中心建立LDP特征提取窗口,计算其4方向LDP编码,得出图像的特征向量;最后,采用支持向量机(SVM)对人脸进行识别分类。使用该改进算法分别在FERET和Yale数据库中进行实验,并与原始LDP、4方向的LDP方法(4-LDP)、融合PCA与LDP的特征提取算法( PCA-LDP)进行了比较,实验结果表明,所提出的特征提取方法在保证系统实时性的同时,可以有效提高人脸识别的准确率与稳定性。
 

用户评论

查看全部 条评论
发表评论请先 , 还没有账号?免费注册

发表评论

用户评论
技术交流、我要发言! 发表评论可获取积分! 请遵守相关规定。
上传电子资料
鸿运国际手机版